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Commentary

Performance of Bailer’s Method for AUC Confidence
Intervals from Sparse Non-Normally Distributed Drug
Concentrations in Toxicokinetic Studies
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In a paper published in 1988, Bailer (1) proposed a method
to determine a confidence interval for the difference between
two AUCs (e.g., from two doses) in rodents when blood samples
are obtained by destructive sampling. Recently, Nedelman et
al (2) extended the method to estimate a confidence interval
for a single AUC (e.g., at an individual dose level) in sparse
sampling situations. This was done by replacing a certain z
statistic with a t statistic, and estimating the degrees of freedom
by Satterthwaite’s approximation (“Bailer-Satterthwaite
method”). While evaluating the Bailer-Satterthwaite method we
discovered that indiscriminately applying the method to sparse
sampling can yield confidence intervals (Cls) that are so wide
to be of no practical utility. This is because the degrees of
freedom (df) play an integral part in CI estimation, and attempts
must be made to maximize the df in appropriate regions of
the concentration-time (Cp-t) profile. We were also concerned
about the use by Nedelman et al of Cp-t simulated assuming
normal theory. These closely associated factors were delineated
by means of a simulation experiment as follows.

Non-normally distributed Cp-t were simulated, using a
one-compartment model, based on parameters randomly
selected from a generalized lambda distribution (3). Using
arbitrarily chosen mean values and coefficients of variation
(CV) of 16% and 24%, generalized lambda distributions were
generated for the apparent volume of distribution (V,), and
the absorption and elimination rate constants (k, and k.,
respectively). We assumed that V4 was independent of k,
and k., but k, and k. were weakly correlated (r> = 0.5).
Two types of experiments were simulated. In the first, Cp-
t as those obtained by destructive sampling were simulated
in 2 or 4 rodents at each of 5 time-points (0, 1, 4, 8, and
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24 hr). In each of the 10 or 20 rodents, a Cp-t was simulated
using randomly selected values of Vy, k,, and k.. Then,
a normally distributed measurement error with 10% CV
was added to each concentration. In the second experiment,
Cp-t as those obtained by serial sampling were simulated in
2 or 4 rodents at the 5 time-points, by selecting values of
Vg4, ki, and k., and adding a 10% normally distributed
measurement noise. In the first experiment, the mean
AUC was estimated by a point estimate and Bailer-Satterth-
waite CIs as described by Nedelman et al. In the second, a
point estimate and CI for the mean AUC were computed
from the 2 or 4 individual AUCs by standard methods (4).
In both experiments, AUCs were computed by the linear
trapezoidal rule (5). The experiments were simulated 1000
times with Vg, k, and k. having 16% CVs, and 1000 times
with 24% CVs.

The distribution of the pharmacokinetic parameters from
generalized lambda distribution runs are shown in Table 1, and
the AUC estimates and the CI widths are summarized in Table
2. The coverage rate is the percent of runs where the true AUC
is covered by the confidence interval, and the width is the width
(lowest to highest) of the 95% confidence interval. The mean
AUC:s for the 16% and 24% CV runs were virtually identical
whether the concentrations were from serial sampling or from
destructive sampling; also the CVs of the point estimates were
reasonably small in magnitude for both sets of simulations,

Table 1. Profiles of Pharmacokinetic Parameters Generated Using the
Generalized Lambda Distribution

Parameter Mean® CV% Skewness Kurtosis Lowest Highest
A\ 50 16 0.0143 -0.8386 314 68.1
k, 0.05 16 0.0280 -—0.7413 0.032  0.068
[ 0.005 16 —0.1192 —0.4545 0.0028 0.0072
Va 50 24 0.0143 —0.8386 22.2 71.2
k, 0.05 24 0.0280 —0.7413 0.023 0.077
ke 0.005 24 —0.1192 —04545 0.0017 0.0082

@ Values are in arbitrary units.
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Table 2. Point Estimates of Mean AUCs, and Estimation of Their Precision (Confidence Intervals) from Serial and Destructive Sampling

AUC? CI Width
Parameter
CV (%) n” Sample dfe Mean CV(%) Mean CV(%) Coverage
16 2 Destructive 1.8 11,409 11.5 14916 722 97.9
Serial 1 11,398 17.2 37,802 774 94.3
4 Destructive 6.4 11,458 8.6 4,516 33.7 94.8
Serial 3 11,379 12.2 8,087 438 95.1
24 2 Destructive 1.7 11,754 17.2 23,529 83.7 97.3
Serial 1 11,749 26.2 57,616 81.5 93.8
4 Destructive 6.2 11,848 13.0 7,099 441 95.0
Serial 3 11,721 18.5 12,471 48.4 95.0
“CV added to Vy, k,, and k,; a normally distributed measurement error with 10% CV was added to each concentration.
> Number of animals per time-point.
¢ df for destructive sampling was computed by the Satterthwaite approximation.
4 Values are for 1000 simulations, and are in arbitrary units.
Table 3. Probability of Over/Under Estimation of s from Normal-Distribution Theory
df
Probability 1 2 4 8 16 32
P(s<o/2) 0.38 0.22 0.090 0.019 1.1 x 1073 49 X 107¢
P (s> o/2) 0.046 0.018 3.0 X 1073 9.3 x 1073 1.1 X 1077 2.0 X 10713

demonstrating that the AUCs are estimated with acceptable
precision. The Cls showed large widths but did exhibit approxi-
mate 95% coverage.When Cp-t were generated under realistic
assumptions about random variation, the confidence intervals
retained their validity (coverage) even under sparse sampling
situations. However, the intervals from sparse sampling were
so wide as to be practically useless. Interestingly, whereas the
average CI widths approximately tripled when the number of
animals per time-point decreased from 4 to 2, the means of the
point estimates were essentially identical, and the CVs of the
AUC point estimates increased only slightly. Therefore,
whereas the Cls from sparse sampling had little utility, the
AUCs had acceptable precision.

Why is this so? This is because the standard errors (SE)
are underestimated in sparse sampling situations which leads
to wide Cls due to large tyg75. This is explained as follows.
Let o be the true SE of the AUC based on infinite degrees of
freedom, and let s be its estimate either based on the Bailer
method for destructive sampling or computed using standard
methods with serial sampling. If o were known, then a 95%
CI of the mean AUC could be computed using tyo;5 = 1.96
(infinite df):

AUC % 1.960

However, if ¢ is not known, and there are, say, only 2 df,
to.g7s becomes 4.3, and the 95% CI will be

AUC * 43s

Thus, the critical value has approximately doubled com-
pared to when the df was infinite. Why must it be this way?
This is because s too often underestimates ¢ (due to lower
df), and the critical value needs to be large to compensate.
When normal distribution theory is valid, probabilities involv-
ing s can be computed exactly. Table 3 shows probabilities
that s is less than half of ¢ or more than twice o for
various degrees of freedom. Clearly the tendency for s to
underestimate ¢ is greater than the tendency to overestimate.
Now, confidence intervals are designed to achieve a specified
level of coverage. In order to attain the appropriate level of
coverage, a larger critical value must be used to compensate
for when s is underestimated.

Thus, with sparse sampling, the AUC may be determined
with acceptable precision, but its confidence interval may be
misleading; the CIs tend to underestimate precision. To avoid
this situation sparse sampling designs must be implemented to
increase the df in appropriate regions of the Cp-t profile. This
was one of the intended messages in the original paper of
Nedelman et al (2). In that paper the 1-2-3-3-1 design gave
narrower intervals for the compound considered there.
Thus, to implement the Bailer-Satterthwaite method, prior infor-
mation about Cp-t profiles is required. From such information,
sampling designs can be selected to assure that both AUC point
estimates and its CI are reliably determined.
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